Weihan Li

Email:weihanli@gatech.edu | Personal Website: https://weihanlikk.github.io

Education

Georgia Institute of Technology, PhD in Machine Learning	Sept 2023 – now
• Ph.D. Advisor: Prof. Anqi Wu	
• Department: School of Computational Science and Engineering.	
Zhejiang University, Master in Computer Science and Technology	Sept 2020 – May 2023
Advisor: Prof. Gang Pan	
• Department: College of Computer Science and Technology.	
Zhejiang University, Bachelor in Computer Science and Technology	Sept 2016 – June 2020

Research Interests

My research focuses on developing advanced methods for modeling large-scale neural (behavioral) data to address fundamental problems in neuroscience. Additionally, I am interested in the intersection of reinforcement learning and LLMs.

Methodologies: State-space models, Reinforcement Learning, Probabilistic Generative Modeling, Probabilistic Inference

Applications: Neuroscience, LLM Alignment, LLM Reasoning.

Selected Research Projects

Inverse Reinforcement Learning for Robust Reward Inference from Animal	Feb 2025 - now
Behavior	

- Developed advanced IRL methods to infer interpretable and robust reward functions from observations of animal behaviors.
- Explored novel inference techniques that capture subtle behavioral nuances and generalize well to complex decision-making scenarios.
- Investigated potential applications of developed reward-inference methods for better modeling and interpreting human preferences, with implications for improving human-aligned feedback mechanisms in LLMs.
- Learning Time-Varying Multi-Region Communications via Scalable Markovian Aug 2024 Jan 2025 Gaussian Processes
- Developed a Markovian Gaussian Process framework for capturing dynamic, multi-region brain communications with continuously evolving temporal delays.
- Integrated Gaussian Processes with State Space Models via a novel universal connection, significantly improving model flexibility and biological relevance.
- Leveraged parallel scan based inference algorithms, reducing computational complexity from $O(T^3)$ to $O(\log T)$, enabling efficient processing of large-scale neural datasets.

Multi-Region Markovian Gaussian Process: An Efficient Method to DiscoverSep 2023 - Jan 2024Directional Communications Across Multiple Brain RegionsSep 2023 - Jan 2024

- Developed a novel framework integrating State Space Models with multi-output Gaussian Processes to capture latent neural interactions across brain regions.
- Established a new theoretical connection, converting multi-output Gaussian Processes with complex-valued kernels into state-space approximation, explicitly modeling frequencies and phase delays of neural activities.
- Achieved linear computational complexity with respect to the number of time points, combining the efficiency of State Space Models with the expressive power of Gaussian Processes.

Publications

Learning Time-Varying Multi-Region Communications via Scalable Markovian Gaussian Processes	Preprint [link]
<i>Weihan Li</i> , Yule Wang, Chengrui Li, Anqi Wu	
A Revisit of Total Correlation in Disentangled Variational Auto-Encoder with Partial Disentanglement	Preprint [link]
Chengrui Li, Yunmiao Wang, Yule Wang, <i>Weihan Li</i> , Dieter Jaeger, Anqi Wu	
Exploring Behavior-Relevant and Disentangled Neural Dynamics with Generative Diffusion Models Yule Wang, Chengrui Li, <i>Weihan Li</i> , Anqi Wu	NeurIPS 2024 [link]
Multi-Region Markovian Gaussian Process: An Efficient Method to Discover Directional Communications Across Multiple Brain Regions <i>Weihan Li</i> , Chengrui Li, Yule Wang, Anqi Wu	ICML 2024 [link]
A Differentiable Partially Observable Generalized Linear Model with Forward-Backward Message Passing Chengrui Li, <i>Weihan Li</i> , Yule Wang, Anqi Wu	ICML 2024 [link]
Forward χ^2 Divergence Based Variational Importance Sampling Chengrui Li, Yule Wang, <i>Weihan Li</i> , Anqi Wu	ICLR 2023 [link]
Online Neural Sequence Detection with Hierarchical Dirichlet Point Process <i>Weihan Li</i> , Yu Qi, Gang Pan	NeurIPS 2022 [link]
Efficient Point-Process Modeling of Spiking Neurons for Neuroprosthesis <i>Weihan Li</i> , Cunle Qian, Yu Qi, Yiwen Wang, Yueming Wang, Gang Pan	EMBC 2021 [link]

Technique Skills

Languages: C++, Python, Matlab, Latex

Technologies: PyTorch, Jax

Teaching and Academic Services

Teaching Experience: TA for Gatech CSE-8803 Statistical machine learning models for neural and behavioral data analysis.

Conference Reviewer: NeurIPS 2023/2024/2025, ICML 2024/2025, ICLR 2024/2025.